

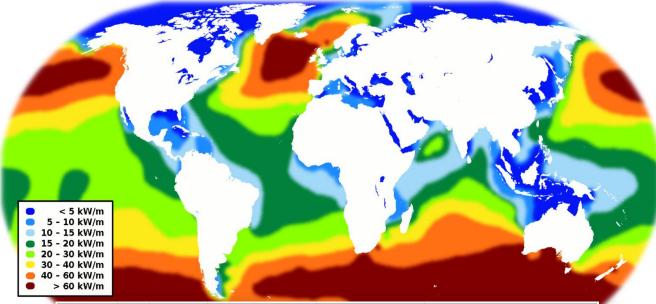
Energize the Future with Ocean Waves

15 - 18 January 2018

Presented by Henry Han Lei Hann-Ocean Energy

AGENDA

- 1. Why Wave Energy?
- 2. Drakoo Working Principle
- 3. Developing Milestones
- 4. Key Features and Advantages
- 5. Technical Specifications
- 6. Performance and Benefits
- 7. Applications
- 8. Case Study
- 9. Live Demo. via the Internet

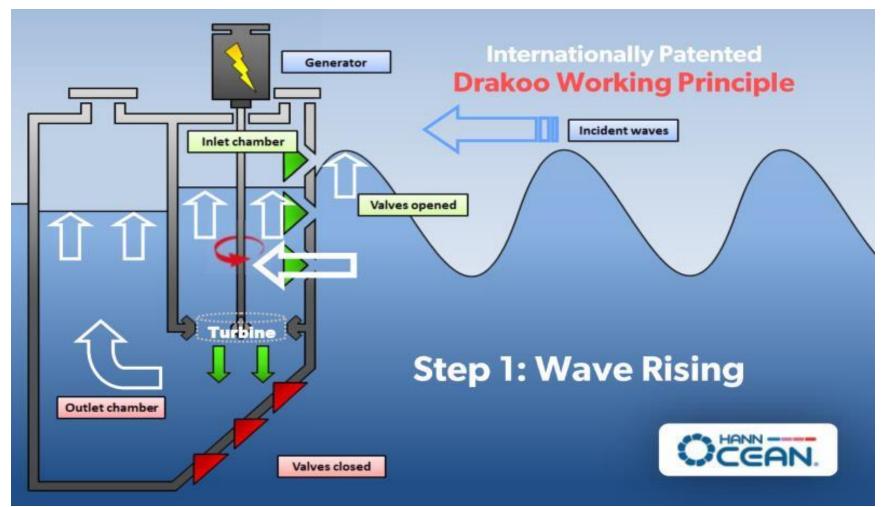


Why Wave Energy?

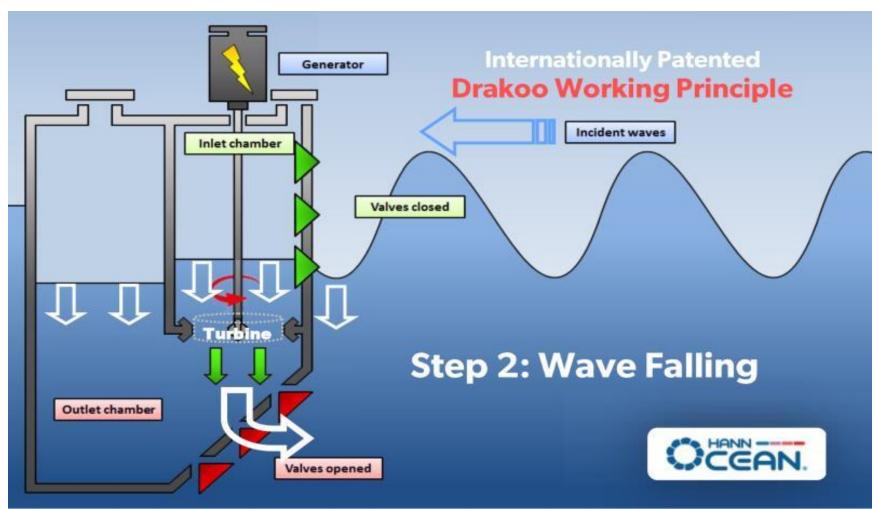
- 1. A vast, untapped resource of renewable energy
- Wave energy much denser than wind and solar energy in kW/sq.m
- 3. Easier to forecast
- 4. Can be harnessed 24/7

The world's total theoretical potential of wave energy is estimated to be 29,500TWh per year. Source: Mork et all. (2010) **Global Offshore Annual Wave Power Density Distribution**

		Wave F	lux	Drakoo Flux	Yearly Energy Output				
			kW/m		kWh/m				
0		5	2.5	0.5	4,555				
5		10	7.5	1.6	13,666				
10	-	15	12.5	2.6	22,776				
15		20	17.5	3.6	31,886				
20	-	30	25.0	5.2	45,552				
30	-	40	35.0	7.3	63,773				
40	-	60	50.0	10.4	91,104				
60	-	100	80.0	16.6	145,766				


Energize the Future with Ocean Waves

www.hann-ocean.com

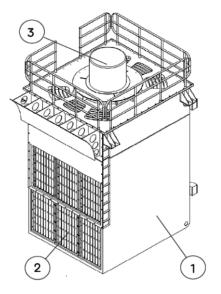

Drakoo Working Principle

Drakoo Working Principle

Development Milestones

Aug. 2008	International patent of the Drakoo WEC concept filed
Sep. 2010	1:5 scale Drakoo model tested in Nanyang Technological University (NTU), achieving a peak Capture Wave Ratio (CWR) of up to 66%
Jul.2011	1kWp Drakoo prototype tested at National Renewable Energy Centre UK (Narec), achieving a peak CWR beyond 80%
Jun. 2012	1 st commercial order from Sembcorp Marine secured
Oct. 2012	4 units of Drakoo 4kWp delivered to Sembcorp Marine
Nov. 2012	Drakoo 4kWp sea trial conducted
Aug. 2013	Drakoo 16kWp array deployed in Tuas View Sea
Feb. 2015	Hann-Ocean Energy's subsidiary in China registered
Nov. 2015	"Hann-Ocean 01" ocean wave tank construction completed
Jul. 2016	"Hann-Ocean 01" wavemaker (120kWp) installed and tested
Dec. 2016	Drakoo 10 kWp full-system assembled and started generating electricity
Nov. 2017	Drakoo 10kWp reached its peak electric capacity
Oct. 2017	Sales enquiries from the Persian Gulf for wellhead platforms and South Africa
Jun. 2018	Further upgrade the entire electric system to 15kWp




Drakoo Power Record

Through our continuous effort in the Drakoo design optimization and the product improvement, the Drakoo power output performance in terms of peak power, rms power and stability is progressing rapidly, starting from 1kW to 11.2kW in 15 months only.

Design Configuration:

- 1) Twin-chamber Hull
- 2) Checkerboard Valves
- 3) Power Take-off System

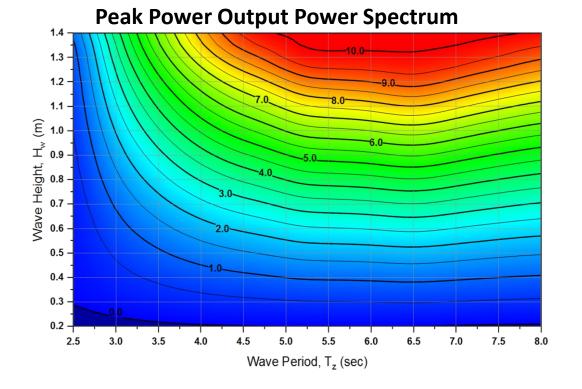
Со

The Internationally patented modular design enables constructions of large-scale wave power arrays by connecting multiple units using bolting, welding or Hann-Ocean's Rigid Pontoon Connectors.

Key Features and Advantages

Simplicity	Plug & Run power take-off; In modular configuration
Efficiency	High Efficiency, up to 50% overall energy conversion
Reliability	Use of commercially available parts for key components
Durability	Self-pressure relieving feature in stormy seas
Eco-friendliness	Harmless to marine life, minimal impact on sea environment
ost-effectiveness	Low material costs and economically justifiable pricing
Versatility	Applicable at shoreline or far offshore, in fixed or floating mode
Scalability	Installation capacity variable from kW unit to MW array

Technical Specifications


Model No.: B0010	Version: 012018
Length (L)	3.0 m
Width (B)	3.5 m
Height (H)	5.1 m
Weight (W)	12 ton
Peak Output Wave Height (H _w)	1.3 m
Optimal Wave Period (T _z)	5 sec
Electricity Generator	Permanent Magnetic AC Generator
Peak Power Output	10 kWp
Peak Efficiency	Up to 50%
Wave Absorption	Up to 80%
Position Keeping	Attached or integrated into floating platforms or fixed structures

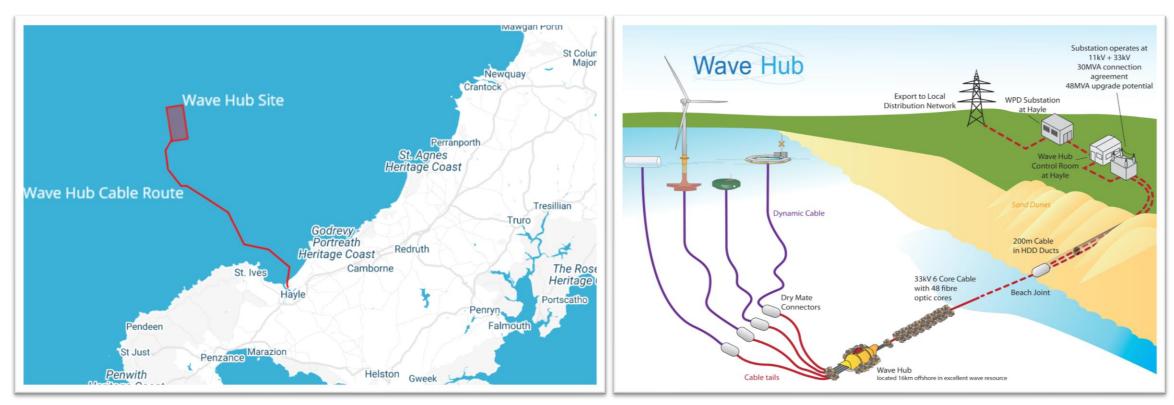
Performance and Benefits

- ✤ Internationally patented
- Proven in labs and seas
- Cost-effective solution to replace diesel generators
- Brand-new technology for wave energy to meet growing global demand for clean energy
- Especially in island communities and remote offshore operations.

Applications

- Fixed modular Drakoo WEC array, e.g. fixed breakwaters
- Floating modular Drakoo WEC Array, e.g. Drakoo Type-X
- Floating Stand-alone Drakoo WEC, e.g. Drakoo Type-R
- Integrated with floating or fixed structures along shorelines, e.g. floating sports hubs
- Integrated with floating or fixed offshore structures, e.g. oil and gas production platforms,

fish farms and offshore wind turbines



Wave Hub at Cornwall, United Kingdom One of the ideal wave test sites on the globe

UK government has invested 42m£ in Wave Hub

Wave Hub – Cornwall, United Kingdom

Resource Assessment

	Wave	Zero-Crossing Wave Period (Sec)									Availability			1										
Oc	currence	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.75	10.25	10.75	11.25	11.75	12.25	Total	upto 3.0m	upto 3.5m	upto 4.0m
	0.25	0.1	0.4	0.2	0.1	0.1	0.1	0.1	0	0	0	0	0	0	0	0	0	0	0	0	1.1			
	0.75	0	0	0.6	1.4	1.8	1.9	1.8	1.9	1.9	1.5	0.8	0.4	0	0	0	0	0	0	0	14			
(L	1.25	0	0	0	0.1	0.9	2.5	4.0	4.0	3.4	2.8	2.3	1.8	1.1	0.5	0.3	0.1	0	0	0	23.8	81.6%		
	1.75	0	0	0	0	0	0.2	1.4	3.0	3.4	3.1	2.6	2.1	1.6	1.1	0.6	0.4	0.2	0.1	0	19.8	81.0%	87.9%	02.19/
ight	2.25	0	0	0	0	0	0	0	0.6	2.1	2.5	2.2	1.9	1.5	1.2	0.9	0.5	0.2	0.1	0	13.7			92.1%
Hei	2.75	0	0	0	0	0	0	0	0	0.3	1.4	1.8	1.6	1.3	1	0.7	0.6	0.3	0.1	0.1	9.2			
ve	3.25	0	0	0	0	0	0	0	0	0	0.2	1	1.4	1.2	0.9	0.7	0.4	0.3	0.1	0.1	6.3			
Wa	3.75	0	0	0	0	0	0	0	0	0	0	0.2	0.8	1	0.8	0.5	0.4	0.3	0.1	0.1	4.2			
nt	4.25	0	0	0	0	0	0	0	0	0	0	0	0.2	0.7	0.8	0.5	0.4	0.2	0.1	0.1	3			
ifica	4.75	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0.5	0.5	0.3	0.2	0.1	0.1	1.9	18%		
Signi	5.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0.3	0.3	0.1	0.1	0	1	10/0	11%	7%
Si	5.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.3	0.2	0.1	0	0.7			//0
	6.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0	0.3			
	6.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.1	0	0.2			
	Total	0.1	0.4	0.8	1.6	2.8	4.7	7.3	9.5	11.1	11.5	10.9	10.2	8.6	7.0	5.1	3.8	2.2	1.1	0.5				

- 1) 7% occurrence above $H_w 4m >> Cut-Off$
- 2) Average Wave power flux without cut-off = 53.2 kW/m
- 3) Average Wave power fluc with cut-off = 33.7 kW/m

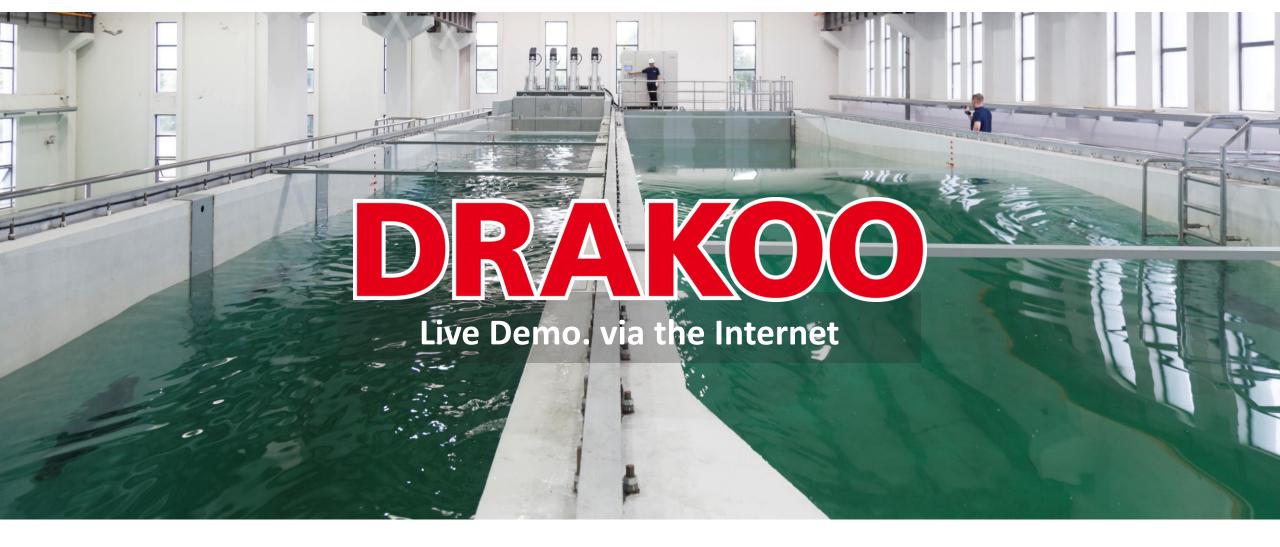
DRAKOO TYPE-X 6.9MW_P WEC ARRAY (PATENT APPLICATION IN PROGRESS)

Design Dimensions			
Туре	Drakoo-B Array in X Shape		
Dimensions	Dia. 197 x 12.1	m	
Water Draft	9.3	m	
Lightship Weight	5,880	MT	
Array Peak Capacity	6.900	MW	
Design Conditions			
Nominal Significant Wave Height	2.00	m	
Maximum Cut-off Wave Height	4.00	m	
Optimal Design Wave Period T _z	8.0	sec	
Optimal Wave Length L	100	m	

Design Dimensions

DRAKOO-X WEC ARRAY PERFORMANCE

Cost-Effective Design Option


Power Output

Drakoo-Module Power Capacity (peak)	75	kWp
Number of Modules in the Array	92	#
Array Power Capacity (rms)	4.60	MW
Array Power Capacity (peak)	6.90	MWp
Electricity Product	tion	
Electricity Product Annual Energy Production of Array	tion 11,300	MWh
		MWh MW (rms)

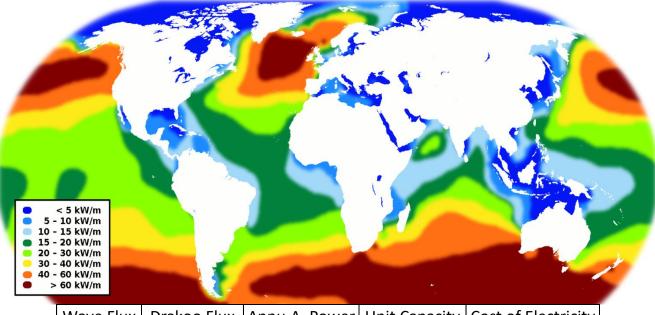
PART OF ABU DHABI SUSTAINABILITY WEEK

DRAKOO - Energize the Future with Ocean Waves

THANK YOU!

For more information, please

Visit us at Booth #5008 in WFES2018


Visit our website at www.hann-ocean.com

Email us at enquiry@hann-ocean.com

COST OF ELECTRICITY PRODUCED BY DRAKOO

Wave Flux	Drakoo Flux	Annu.A. Power	Unit Capacity	Cost of Electricity
kW/m	kW/m	kW	kWp	USD/kWh
12.5	2.6	7.8	15	0.16
17.5	3.6	10.8	15	0.12
25	5.2	15.6	20	0.096
35	7.3	21.9	25	0.077
50	10.4	31.2	35	0.068

Note: Above is based on a total installation capacity of 15MWp for local consumption.